
FIMS documentation Documentation
Release 1.0

John Deck, RJ Ewing

Apr 27, 2018

About the FIMS System

1 Introduction 3

2 Biocode FIMS Web Application 5
2.1 How FIMS is organized . 5

3 Biocode FIMS ElasticSearch Query Information 7
3.1 Querying . 7
3.2 Tokenization . 7

4 bioValidator: A desktop validation tool (legacy) 9
4.1 About . 9
4.2 Getting Started . 9
4.3 Building rules for data validation . 9
4.4 Validating Data . 9
4.5 PhotoMatching . 10

5 Identifiers 11
5.1 Expedition identifiers . 11
5.2 Dataset identifiers . 11
5.3 Resource identifiers . 12
5.4 BCID Resolution System . 12

6 Introduction to BCIDs 15
6.1 Discussion . 15
6.2 Resolution w/ Suffixes . 16
6.3 Relationship with EZIDs . 16
6.4 RDF/XML Accept Headers . 16
6.5 Developer Information . 17

7 Samples and Sub-sampling 19

8 Installation 21
8.1 Details . 21
8.2 Installation and Build . 21
8.3 Optional Component . 21
8.4 Additional Installation Instructions . 22
8.5 Notes . 22

i

9 ElasticSearch Configuration 23

10 Dynamic Templates 25
10.1 Analyzer . 25

11 Index Aliases 27

12 Implementations 29
12.1 BiSciCol . 29

13 XML Configuration File 31
13.1 Attributes . 31

14 REST Services 33
14.1 Versioning . 33

15 FIMS Commons Javadocs 35

16 User Accounts 37
16.1 Account Creation . 37
16.2 Project Administrators . 37

17 Minting IDs, Creating Expeditions, and Validating Data using REST calls 39
17.1 Logging in . 39
17.2 Mint Bcid . 39
17.3 Optional minting services . 40

18 curl Examples 43
18.1 Public Content . 43
18.2 Secure Content . 43
18.3 Using the Creator . 44

19 oauth2 45
19.1 Authorization . 45
19.2 Access Token . 45
19.3 Refresh Token . 46
19.4 API Access . 46

20 FIMS v1 migration to FIMS v2 49

21 REST Service Migration Guide 51

ii

FIMS documentation Documentation, Release 1.0

All source code mentioned in this documentation is open source and freely available and can be found in appropriate
repositories living under the Biocode, LLC GitHub Organization.

About the FIMS System 1

https://github.com/biocodellc

FIMS documentation Documentation, Release 1.0

2 About the FIMS System

CHAPTER 1

Introduction

Biocode-FIMS is used for data validation, expedition planning, and data management for field-based surveys enabling
tracking physical objects including organisms, soil cores, water samples, and sub-samples. If you would like to start
your own Biocode FIMS project, you can either download and install the relevant modules (all freely available) or
contact the owner of the BiSciCol FIMS installation code site to see if you can be added as a project to this installation.

3

https://github.com/biocodellc/biscicol-fims

FIMS documentation Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Biocode FIMS Web Application

Biocode FIMS has multiple running instances, in support of a variety of field-based sampling projects. An example
of how the FIMS components work together is running at the BiSciCol homepage. The biscicol-fims codebase is one
example of a FIMS implementation which features data validation, a graph-based data storage engine, assignment of
globally unique identifiers (ARKS) for expeditions, datasets, and all samples and processes. Project administrators
control and validate specific fields, while users can choose to add their own data to spreadsheet templates.

For developers: All Biocode FIMS installations use the biocode-fims-commons code repository and may also include
the biocode-fims-fuseki codebase for working with triples and/or the biocode-fims-sequences codebase for working
with fasta and fastq sequencing files.

2.1 How FIMS is organized

The following sections describe how data is stored in the FIMS system. See the identifiers section for more information
how identifiers are applied at each level.

2.1.1 Projects

A project defines a set of data held in common by a group of contributors. The data from a single project shares
common concepts, attributes, and validation rules. It is owned by a project administrator user who has the power to
set validation rules, concept mappings, and users that are permitted to share data under the project. New projects are
created infrequently and require super-user status to create (currently the owner of BCID site itself). However, once
created, project values can be edited by an assigned project administrator.

To create a new project, please contact the BCID owner.

2.1.2 Expeditions

Projects contain many expeditions. An Expedition refers to a group of datasets and is associated with a project. Users
may freely create expeditions.

5

http://biscicol.org/
https://github.com/biocodellc/biscicol-fims
https://github.com/biocodellc/biocode-fims-commons
https://github.com/biocodellc/biocode-fims-fuseki
https://github.com/biocodellc/biocode-fims-sequences

FIMS documentation Documentation, Release 1.0

2.1.3 Datasets

Expeditions contain many datasets. A dataset typically refers to an excel spreadsheet. When loaded through the
associated Biocode-FIMS expeditions, a reference to this dataset is stored as part of the Biocode-FIMS BCID system
with a unique ARK. When a dataset is created, it is given a unique code, which is owned by the user that first uploaded
it. This user may choose, to re-load this dataset again, in which case a new reference will be loaded here.

2.1.4 Resources

All expeditions contain one or more resources. A special resource identifier is created for each of the expedition
resources. For example, a project cataloging tissue samples may choose to define a resource for the tissue itself, a
resource for the collecting event data associated with the tissue, and an identification resource containing information
about the taxonomic name associated with the tissue. Or, a project may choose to simply bundle all of this information
into a single resource describing all of this data.

6 Chapter 2. Biocode FIMS Web Application

CHAPTER 3

Biocode FIMS ElasticSearch Query Information

Below you will find information about how queries are matched for Biocode FIMS implementations using Elastic-
Search.

3.1 Querying

Currently queries can be filtered on:

• expeditions

• columns

• full text search

3.1.1 columns

This is a {key}:{value} pair, where {key} is either a columnName or a columnUri defined in the project
configuration file (config files) or _all. When using {key}:{value} queries, the {value} is an exact match.

3.1.2 _all query

The _all Query is a special query which performs a full text search across all columns in the project. This is a much
more lenient query compared to the exact match detailed above and follows the tokenization process detailed below.

3.2 Tokenization

Currently the tokenization process splits words on any non-letter character or camelCase. The tokens are then lower-
cased and further processed to remove any possessives and plurals.

Tokenization Ex:

7

FIMS documentation Documentation, Release 1.0

"manyDonkeys" -> ["many", "donkey"]

The above result match the following queries:

_all=many

_all=manyMore

_all=many Donkeys

_all=manyDonkeys

_all=DONKEYS

_all=donkey

However it will not match:

_all=manydonkeys

For more information, you can view the Elastic Search Analysis Docs. Our current anlyzer settings can be found here.

8 Chapter 3. Biocode FIMS ElasticSearch Query Information

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html

CHAPTER 4

bioValidator: A desktop validation tool (legacy)

4.1 About

bioValidator is a desktop appliction that is “maintenance” only mode and is included here since it is closely related to
other FIMS projects and some projects still use bioValidator. Included in bioValidator is a photo-matcher, which is a
visual method for matching photos with spreadsheet elements and renames photos according to Collector’s Specimen
Numbers.

4.2 Getting Started

Download latest release. bioValidator installs and runs in a single file. It is reccomended, however, that you create its
own directory when downloading it. If you have Java 1.6 or later installed on your computer, everything will run fine.
Otherwise, you will need to download and install Java 1.6

Entering Data For Biocode by using the Biocode Template and view instructions for entering data

4.3 Building rules for data validation

Data validation is based on a set of rules that are defined in an XML file. Each rule can be set to a level of “Error”,
which means that no downstream processing or PhotoMatching can occur, or “Warning” which means that this is
an issue that can be fixed later and not critical for fixing immediately. Tools for building validation XML files are
forthcoming in later releases. Meanwhile, it is important to know that all XML rules files themselves are validated
against an XSD schema document

4.4 Validating Data

You must first download the appropriate Excel Template file to begin entering data. The excel template and instruc-
tions for filling it out are available on the Biocode

9

https://github.com/biocodellc/bioValidatorDeploy
http://biocode.berkeley.edu/excel/BiocodeTemplate.xls'
http://biocode.berkeley.edu/batch_upload_help.html
http://biocode.berkeley.edu/bioValidator
http://biocode.berkeley.edu/batch_upload_help.html

FIMS documentation Documentation, Release 1.0

Website. Once you have entered some data, you can validate it by opening bioValidator and clicking on “Load
Spreadsheet”. You can use the tools on the screen to view errors and/or warnings. Once you fix any errors or warning,
save your spreadsheet and re-load it by clicking on “Load Spreadsheet” again.

4.5 PhotoMatching

In order to photomatch, you must first have a spreadsheet that has passed validation with no errors (though you may
proceed with warnings). Click on the “Input Directory” to choose a directory that contains your photos. bioValidator
will not modify photos in this directory, but it will create a subdirectory called “.bvthumbs” which the application
uses to display thumbnails. Once you have loaded a directory, choose an output directory by clicking on “Output
Directory”. This directory will store photos that have been renamed during the matching processes. Create matches of
photos to specimens by scrolling through each and pressing Control & the mouse click button at the same time. You
will see photos copied to each specimen.

Note that if you have an output directory with appropriately named photos that have already gone through the pho-
tomatching processing, they will appear under the specimen information.

10 Chapter 4. bioValidator: A desktop validation tool (legacy)

CHAPTER 5

Identifiers

FIMS uses a centralized minting service to assign identifiers for three types of identifiers: expeditions, datasets, and
resources. The three types of identifiers are described below.

Each FIMS system installation must use its own name assigning authority number and register with California Digital
Library’s EZID service to mint Archival Resource Keys (ARKs).

5.1 Expedition identifiers

• resourceType: http://purl.org/dc/dcmitype/Collection

• Mutable, representing the most current version of a particular spreadsheet

• Metadata:

– expeditionCode

– expeditionTitle

– userId (who created this expedition)

– ts (when loaded)

– projectId (project this belongs to)

– public (public or not)

5.2 Dataset identifiers

• resourceType: http://purl.org/dc/dcmitype/Dataset

• Immutable

• Belongs to a specific expedition

• Metadata:

11

http://purl.org/dc/dcmitype/Collection
http://purl.org/dc/dcmitype/Dataset

FIMS documentation Documentation, Release 1.0

– webAddress (where this dataset can be found, in its native format, depending on installation)

– userId (who uploaded this dataset)

– doi (an optional doi, in addition to the created ARK)

5.3 Resource identifiers

• resourceType: defined in configuration file

• Belongs to an expedition. Multiple resources may be specified for each expedition.

• Implements suffix-passthrough feature to identify individual resources within each dataset. For example, a
single “Material Sample” identifier is created for each expedition. If the expedition has 1000 rows representing
physical samples, 1000 identifiers can be resolved by appending a locally unique suffix on to the Resource
Identifier root.

• A resource identifier plus the locally unique primary key loaded for the most recent dataset in an expedition
forms the globally unique identifier for a particular resource.

5.4 BCID Resolution System

The following illustration shows how BCIDs work with local identifiers, the world wide web, and EZID’s name-to-
thing resolution service. A field researcher uses their own numbering system (e.g. ‘MBIO56’), and uploads their
data to FIMS, which assigns it to a resource category (e.g. ‘R2’). The FIMS system itself is registered under the
ark: scheme, and has a name assigning authority number (NAAN) of 21547. Resolution requests coming through
name-to-thing are re-directed to the BCID resolution service.

The following chart shows how BCID resolution works for expeditions, datasets, and resources in the FIMS sys-
tem with actions falling under forwarding, or metadata display. Forwarding behaviour is determined by either the
specification of a target webaddress in the database, or absent that, a specification in the project’s configuration file.

12 Chapter 5. Identifiers

FIMS documentation Documentation, Release 1.0

NOTE: This page needs Updating!

5.4. BCID Resolution System 13

FIMS documentation Documentation, Release 1.0

14 Chapter 5. Identifiers

CHAPTER 6

Introduction to BCIDs

BCIDs addresses offer a robust, easy to use service, extending the [http://n2t.net/ezid California Digital Library EZID]
solution for the biological collections community. EZIDs offer ease of use, scalability, long-term persistence, resolv-
ability, and a consistent metadata format. BCIDs extend this by offering an easy mechanism to assign billions of
identifiers right now for data elements (individual samples or processes acting on those samples). BCIDs allow any
local ID/UUID to resolve to a group level identifier. Organizations have the option of later purchasing their own EZID
subscription for more control over their identifiers. All of the representations that are referred to by BCIDs fall under
the [http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 License], enabling others to refer-
ence your identifiers and the objects that they refer to as long as they attribute them. Since BCIDs are self-describing
in HTML and RDF/XML, downstream users need only maintain the original identifier

6.1 Discussion

BCIDs are hierarchical identifiers, allowing a single “group” to represent and resolve many sub-identifiers. A group
is associated with a column of local identifiers, such as a set of specimens, sharing a single common concept. These
concepts are, for now, a [http://biscicol.org/bcid/concepts.jsp constrained list] defined by the biodiversity informat-
ics communities and assembled by the [http://biscicol.org BiSciCol project]. Elements are references to individual
instances, such as an individual specimen.

A data group may have the following form:

• ark:/21547/R2

A data element within the group may extend this in the following manner:

• ark:/21547/R2MBIO56

The structure above defines the following segments:

||description||value||notes|| ||scheme||ark:||all BCIDs are ARKs|| ||NAAN (Name Assigning Authority Num-
ber)||21547||all BCIDs use this NAAN|| ||data group||R2||The data group identifier must be assigned by BCID|| ||data
element||MBIO56||The user can supply a local ID, Darwin Core Triplet, or UUID||

15

http://n2t.net/ezid
http://creativecommons.org/licenses/by/3.0/
http://biscicol.org/bcid/concepts.jsp
http://biscicol.org

FIMS documentation Documentation, Release 1.0

Data elements share a root structure with a data group. The delimiter between the scheme, NAAN, and data group is
a forward slash. Data group identifiers always end with the first number and data elements immediately follow this
number.

Data groups are technically not datasets. This is because a data group must be defined by a single conceptual entity,
and stands for that conceptual entity for all child elements. For instance, we can define a data group of “Sound”. Any
unregistered element that appears following the data group designation will technically be a type of “Sound”. This is
useful, for instance, if we have scores of objects or processes that have no web-resolution but we still want to be able
to refer to them uniquely and know they are an instance of “Sound”.

We can also attribute a dataset to one or more data groups. The dataset can be an ARK or a DOI (issued separately).

6.2 Resolution w/ Suffixes

N2T resolver = {{{http://n2t.net/{ARK}}}} (e.g. http://n2t.net/ark:/21547/R2)

N2T metadata = {{{http://n2t.net/ezid/id/{ARK}}}} (e.g. http://n2t.net/ezid/id/ark:/21547/R2)

BCID resolver = {{{http://biscicol.org/id/{ARK}}}} (e.g. http://biscicol.org/id/ark:/21547/R2)

BCID Metadata = {{{http://biscicol.org/id/metadata/{ARK}}}} (e.g. http://biscicol.org/id/metadata/ark:/21547/R2)

BCID Suffix resolver = {{{http://biscicol.org/id/{ARK}_{Suffix}}}} (e.g. http://biscicol.org/id/ark:/21547/
R2MBIO56)

BCID Suffix Metadata = {{{http://biscicol.org/id/metadata/{ARK}_{Suffix}}}} (e.g. http://biscicol.org/id/metadata/
ark:/21547/R2MBIO56)

Data groups can be assigned a target URL which indicates where to resolve this group. If the “Maintain local ID’s”
box is checked on data group creation then that indicates suffixes will be passed through to the resolution target. The
following table illustrates how identifiers resolve. Note that the N2T resolver does not handle suffix-passthrough yet
so in the short term, N2T will only resolve data groups without suffixes.

||BCID||Maintain Local ID’s||Target URL (group or element)||Ultimate Resolution Target||
||http://n2t.net/ark:/21547/R2||true||NULL||(BCID metadata)|| ||http://n2t.net/ark:/21547/R2||false||NULL||(BCID
metadata)|| ||http://n2t.net/ark:/21547/R2||true||http://biocode.berkeley.edu/specimens/||(BCID metadata)||
	http://n2t.net/ark:/21547/R2		false		http://biocode.berkeley.edu/specimens/		http://biocode.berkeley.edu/specimens/	
	http://n2t.net/ark:/21547/R2MBIO56		true		http://biocode.berkeley.edu/specimens/		http://biocode.berkeley.edu/specimens/MBIO56	
	http://n2t.net/ark:/21547/R2MBIO56		false		http://biocode.berkeley.edu/specimens/		http://biocode.berkeley.edu/specimens/	

6.3 Relationship with EZIDs

All group level identifiers are registered as EZIDs. It is possible to also register element level identifiers as EZIDs.
Please talk to us if you would like to do this.

6.4 RDF/XML Accept Headers

Calling the Metadata or Resolution targets using the BCID resolver will return RDF/XML. To enable this, you must
pass in the “application/rdf+xml” accept header. To do this in curl, try:

{{{curl -H “Accept: application/rdf+xml” http://biscicol.org/id/metadata/ark:/21547/R2MBIO56}}}

You can also try it out using [http://linkeddata.informatik.hu-berlin.de/uridbg/index.php?url=http%3A%2F%
2Fbiscicol.org%2Fbcid%2Fid%2Fark%3A%2F21547%2FR2&useragentheader=&acceptheader=application%
2Frdf%2Bxml an online tool using and the “ark:/21547/R2” BCID].

16 Chapter 6. Introduction to BCIDs

http://n2t.net
http://n2t.net/ark:/21547/R2
http://n2t.net/ezid/id
http://n2t.net/ezid/id/ark:/21547/R2
http://biscicol.org/id
http://biscicol.org/id/ark:/21547/R2
http://biscicol.org/id/metadata
http://biscicol.org/id/metadata/ark:/21547/R2
http://biscicol.org/id
http://biscicol.org/id/ark:/21547/R2MBIO56
http://biscicol.org/id/ark:/21547/R2MBIO56
http://biscicol.org/id/metadata
http://biscicol.org/id/metadata/ark:/21547/R2MBIO56
http://biscicol.org/id/metadata/ark:/21547/R2MBIO56
http://biscicol.org/id/metadata/ark:/21547/R2MBIO56
http://linkeddata.informatik.hu-berlin.de/uridbg/index.php?url=http%3A%2F%2Fbiscicol.org%2Fbcid%2Fid%2Fark%3A%2F21547%2FR2&useragentheader=&acceptheader=application%2Frdf%2Bxml
http://linkeddata.informatik.hu-berlin.de/uridbg/index.php?url=http%3A%2F%2Fbiscicol.org%2Fbcid%2Fid%2Fark%3A%2F21547%2FR2&useragentheader=&acceptheader=application%2Frdf%2Bxml
http://linkeddata.informatik.hu-berlin.de/uridbg/index.php?url=http%3A%2F%2Fbiscicol.org%2Fbcid%2Fid%2Fark%3A%2F21547%2FR2&useragentheader=&acceptheader=application%2Frdf%2Bxml

FIMS documentation Documentation, Release 1.0

6.5 Developer Information

• View the list of [http://biscicol.org/id/bcid.wadl BCID REST services]

• [http://biscicol.org/bcid/javadoc/index.html JavaDocs] are available

• This is an open source project, please contact the owner to contribute!

6.5. Developer Information 17

http://biscicol.org/id/bcid.wadl
http://biscicol.org/bcid/javadoc/index.html

FIMS documentation Documentation, Release 1.0

18 Chapter 6. Introduction to BCIDs

CHAPTER 7

Samples and Sub-sampling

NOTE: this section assumes the fuseki data storage engine is used in your FIMS installation.

FIMS is primarly a system of samples which are the result of some specimen collection process. Each specimen
collection process can be uniquely defined by the procedure used, who performed it, when it was performed and
subject and target samples. Samples can be thought of in terms of a directed graph with each sample as nodes and
processes represented by edges, connecting samples with all respective sub-samples. It is important to maintain all
points in the chain where significant transformation of material occurs so we can understand the significance of a
distinct sample at any point in the chain. The FIMS configuration file defines the relationships between samples
and processes that join them, mapping a single flat file to a graph-based representation (using the fuseki module)

For more information about connecting samples and processes, read the publication Semantics in Support of Biodiver-
sity Knowledge Discovery.

19

http://purl.obolibrary.org/obo/OBI_0100051
http://purl.obolibrary.org/obo/OBI_0000659

FIMS documentation Documentation, Release 1.0

20 Chapter 7. Samples and Sub-sampling

CHAPTER 8

Installation

This content is for people wishing to install Biocode-FIMS on their own server.

8.1 Details

Biocode-FIMS consists of a core set of Java classes and REST services. Developers have a choice of interacting with
the REST services running on the BiSciCol FIMS instance, which has built in EZID minting capabilities, or running
their own instance of biocode-fims-commons and installing their own EZID instance requiring a purchase of an EZID
account.

To run an instance of FIMS you will need the following components:

• A unix-based server * A java servlet container e.g. Tomcat, Glassfish, Jetty * Connection to a BCID service

8.2 Installation and Build

• Source code is available on this site via Subversion

• Building is done via an Ant build file (provided as part of the distribution)

• a properties file needs to be configured by copying biocode-fims.template to biocode-fims.props (in the root
directory of the distribution)

8.3 Optional Component

• A triple-store database connection for storing datasets as RDF triples. We have tested using [http://jena.apache.
org/documentation/serving_data/ Apache Fuseki]

• An ElasticSearch instance for indexing. See ElasticSearch Configuration for configuration details.

21

http://biscicol.org/
http://github.com/biocodellc/biocode-fims-coomons
http://ezid.cdlib.org/
http://ezid.cdlib.org/
http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/serving_data/
https://www.elastic.co/products/elasticsearch

FIMS documentation Documentation, Release 1.0

8.4 Additional Installation Instructions

• The source contains a sample property file called biocode-fims.template which should be copied to biocode-fims.props – you will need to adjust references in this document.

– Note that references to URLs should begin with “www” as in www.biscicol.org instead of biscicol.org
since some browsers (e.g. Firefox) automatically add the “www” and this changes the session desig-
nation and creates problems during logging in.

8.5 Notes

• It is recommended ALL service calls in the properties file begin with a “www” in the hostname.

22 Chapter 8. Installation

CHAPTER 9

ElasticSearch Configuration

Following is information about configurations changes that are made when setting up a new ElasticSearch cluster

23

FIMS documentation Documentation, Release 1.0

24 Chapter 9. ElasticSearch Configuration

CHAPTER 10

Dynamic Templates

Creating dynamic templates allows us to modify the default index settings and mappings.

10.1 Analyzer

We are currently using a custom default analyzer. To set this up, make a POST request to /_template/
{template_name} with the following in the body:

{
"template" : "*",
"settings" : {
"index" : {

"analysis" : {
"analyzer" : {
"default" : {

"filter" : [
"word_delimiter",
"lowercase",
"asciifolding",
"kstem",
"stop"

],
"char_filter" : [
"html_strip"

],
"type" : "custom",
"tokenizer" : "standard"

}
}

}
}

}
}

25

FIMS documentation Documentation, Release 1.0

26 Chapter 10. Dynamic Templates

CHAPTER 11

Index Aliases

Indexes are created for each project. When creating an index, the format is {projectId}_{todays_date}. Then
we use index aliases to point to the latest index version. The index alias format is {projectId}. The advantage to
this is that if we need to update any settings, mappings, etc we are able to reindex to existing data and point the index
alias to the updated index, without changing the index name.

27

FIMS documentation Documentation, Release 1.0

28 Chapter 11. Index Aliases

CHAPTER 12

Implementations

Refer to documentation for particular projects that utilize the FIMS system for instructions on using the interface. This
documentation focuses on development for back-end components and more generally on topics that all implementa-
tions share, such as minting globally unique identifiers. Here we describe just the BiSciCol implementation to show
how one possible FIMS implementation may be used.

12.1 BiSciCol

The BiSciCol implementation uses a triplestore data storage engine, a dedicated EZID name assigning authority num-
ber, and supports a number of different projects that use this implementation directly:

• Barcode of Wildlife sites (currently Kenya, Mexico, Nigeria, South Africa)

• University and Jepson Herbarium

• Diversity of the IndoPacific (DIPNet)

• New York Botanical Garden

12.1.1 Instances calling some portion of BiSciCol services but running their own
interfaces:

• Amphibian Disease Portal (in development: this instance will only mint expedition identifiers and use validation
services)

• Automated Reef Monitoring System Project (in development: substitutes a mysql data storage engine for the
triplestore data storage)

29

http://biscicol.org/

FIMS documentation Documentation, Release 1.0

30 Chapter 12. Implementations

CHAPTER 13

XML Configuration File

Each project contains its own xml configuration file. This is where the Projects specific configuration is specified.
This includes Resources, attributes, validation rules, and relations.

13.1 Attributes

13.1.1 DataType

Each attribute may specify a dataType. A dataType can be specified to provide additional validation, and in the case
of date, datetime, and time, can be used for data formatting. This is especially helpful for standardizing the data to aid
in querying and analysis.

The following dataType are supported:

• String (default if not specified)

• Integer

• Float

• Date

– must specify dataformat as well

• Time

– must specify dataformat as well

• Datetime

– must specify dataformat as well

31

FIMS documentation Documentation, Release 1.0

32 Chapter 13. XML Configuration File

CHAPTER 14

REST Services

FIMS REST Services are available at: http://biscicol.org/apidocs/v1.1

14.1 Versioning

FIMS REST Services are now versioned. v1 is the default version. You may specify the version by including the
header:

Api-Version: {version}

or via the url:

http://biscicol.org/biocode-fims/rest/{version}/...

We currently support the following versions:

• v1

• v1.1

more info about the specific version resources to come. . .

33

http://biscicol.org/apidocs/v1.1

FIMS documentation Documentation, Release 1.0

34 Chapter 14. REST Services

CHAPTER 15

FIMS Commons Javadocs

Javadocs for FIMS Commons code is available at: http://biocodellc.github.io/biocode-fims-commons/

35

http://biocodellc.github.io/biocode-fims-commons/

FIMS documentation Documentation, Release 1.0

36 Chapter 15. FIMS Commons Javadocs

CHAPTER 16

User Accounts

User accounts are not required to lookup/resolve BCIDs. However, they are required to work with projects, expedi-
tions, or create new BCIDs. Here we describe how to obtain a user account for Biocode-

16.1 Account Creation

User accounts can be created by either by the Biocode-Fims instance owner or by project administrators. Project
administrators can add any existing user in the Biocode-Fims system as an authorized expedition creator. Talk to your
project administrator to be added to a particular project.

[https://github.com/biocodellc/biocode-fims-commons/wiki/OAuth2 Information about Open Authorization]

16.2 Project Administrators

Project administrators are set by the Biocode-Fims instance owner upon request. There is only one designated project
administrator per project. The project administrator can add, create, and remove users, set the location of the validation
XML file, and define the project abstract.

37

https://github.com/biocodellc/biocode-fims-commons/wiki/OAuth2

FIMS documentation Documentation, Release 1.0

38 Chapter 16. User Accounts

CHAPTER 17

Minting IDs, Creating Expeditions, and Validating Data using REST calls

The examples presented here demonstrate possible methods for interacting with the FIMS REST services for cre-
ating identifiers, expeditions, and validating datasets. The full set of REST service calls are at http://biscicol.org/
biocode-fims/rest/fims.wadl . Unless otherwise noted, the parameters in the following examples must be sent with the
type ‘application/x-www-form-urlencoded’.

17.1 Logging in

All BCID minting functions require you to first login. You can login by sending a POST request to:

http://www.biscicol.org/biocode-fims/rest/authenticationService/login

POST Parameters:
username={yourUsername}
password={yourPassword}

Save the cookies that are returned. How you do this depends on your application (some curl examples: http://fims.
readthedocs.org/en/latest/curl_examples.html). Pass the cookies file to the POST requests below to authenticate each
request.

17.2 Mint Bcid

Mint a Bcid by sending at minimum a title, webAddress, and resourceType. Send a POST request to:

http://www.biscicol.org/biocode-fims/rest/bcids

POST Parameters:
webAddress={dataset_webAddress}
title={dataset_title}
resourceType={resourceType} (e.g. "http://purl.org/dc/dcmitype/Dataset")

(continues on next page)

39

http://biscicol.org/biocode-fims/rest/fims.wadl
http://biscicol.org/biocode-fims/rest/fims.wadl
http://fims.readthedocs.org/en/latest/curl_examples.html
http://fims.readthedocs.org/en/latest/curl_examples.html

FIMS documentation Documentation, Release 1.0

(continued from previous page)

*doi={doi}

*graph={graph} (A sparql endpoint or other location to be included in sparql
→˓queries)

*suffixPassThrough={true|pase} (whether this supports suffixPassthrough}

*finalCopy={true|false} (if this is a final copy)

* Optional parameters

Send Cookies with login data

17.3 Optional minting services

Determine your projectID

Knowing your projectID is useful when working with the minting services presented below. Your username must be
added to the projects before using the projects themselves. Talk to your project administrator to have your username
added to a project. The following URL lists all available projects in the FIMS system:

http://www.biscicol.org/biocode-fims/rest/projects/list

Create new Expedition

Expeditions are used in the FIMS system for organizing content that is related to versions of and resources related to,
a spreadsheet. Mint an Expedition by sending the following POST request:

http://www.biscicol.org/biocode-fims/rest/expeditions

POST Parameters:
expeditionCode={new_expeditionCode}
expeditionTitle={new_expeditionTitle}
projectId={your_projectId}
public={public_expedition}
webaddress={target URL for expedition, forwarded when the expedition ID resolved}

Send Cookies with login data

Associate Bcid with Expedition by sending POST request

Associate a BCID with an expedition:

http://www.biscicol.org/biocode-fims/rest/expeditions/associate

POST Parameters:
expeditionCode={dataset_expeditionCode}
bcid={identifier returned in step 2}
projectId={your_projectId}

Send Cookies with login data

Validate Dataset

To validate your dataset, send a POST request to:

http://www.biscicol.org/biocode-fims/rest/validate

Send request as type 'multipart/form-data' (in Curl, use -F for form data vs -d)

(continues on next page)

40 Chapter 17. Minting IDs, Creating Expeditions, and Validating Data using REST calls

FIMS documentation Documentation, Release 1.0

(continued from previous page)

POST Parameters:
projectId={your_projectId}
expeditionCode={your_expeditionCode}
dataset={your_dataset}

Send Cookies with login data

The response is returned as JSON, which will look something like:

{"done": [{
"Samples": {

"errors": [],
"warnings": [{

"Missing column(s)": [
"yearCollected has a missing cell value",
"permitInformation has a missing cell value",
"locality has a missing cell value"

]
}]

}
}]}

17.3. Optional minting services 41

FIMS documentation Documentation, Release 1.0

42 Chapter 17. Minting IDs, Creating Expeditions, and Validating Data using REST calls

CHAPTER 18

curl Examples

NOTE: this page needs updating to show FIMS v2 service examples!

This page explains how to call Biocode-Fims services using curl – For a list of Biocode-FIms service call options see
the [http://biscicol.org/biocode-fims/rest/biocode-fims.wadl Service Descriptions].

18.1 Public Content

Attempt a simple call to resolve an ARK (return HTML):

curl -L http://biscicol.org/id/ark:/21547/R2

Resolve an ARK, returning RDF/XML, for a group + suffix:

curl -L -H "Accept: application/rdf+xml" http://biscicol.org/id/ark:/21547/R2MBIO56

18.2 Secure Content

First thing is to authenticate and set cookies. Make sure to do this in a directory where you have write access:

curl --data "username=USER&password=PSWD" http://biscicol.org/biocode-fims/rest/
→˓authenticationService/login --location --cookie-jar cookies.txt

Then, call the service in question, for example, to list all Identifiers associated with the account you authenticated as:

curl http://biscicol.org/biocode-fims/rest/bcids/list --cookie cookies.txt

If this is a new account without any datasets associated with it, if this request is successful, you will see the result:

{"0":"Create new group"}]

43

http://biscicol.org/biocode-fims/rest/biocode-fims.wadl

FIMS documentation Documentation, Release 1.0

18.3 Using the Creator

The following is an example of how to create a new data group and register local IDs with BCID. There are two main
ways to create new data groups. The first way is to specify the resourceType in the request, such as:

curl -d "title=This is a test&resourceType=dwc:MaterialSample&suffixPassThrough=true
→˓" http://biscicol.org/biocode-fims/rest/bcids/ --cookie cookies.txt

The second way is to first lookup one of the standard resourceTypes in a list, and then using an integer to call the
service:

curl http://biscicol.org/biocode-fims/rest/resourceTypes
curl -d "title=This is a test&resourceTypesMinusDataset=3&suffixPassThrough=true"
→˓http://biscicol.org/biocode-fims/rest/bcids/ --cookie cookies.txt

44 Chapter 18. curl Examples

CHAPTER 19

oauth2

All developers need to register their app. Please contact the system admin to register. You will be issued a client_id
and client_secret. The client_secret should be kept private.

19.1 Authorization

Client app will make a GET request to /id/authenticationService/oauth/authorize. This request will contain the following query parameters:

• client_id (Required) - The client_id your app was issued during when registered.

• redirect_uri (Required) - The absolute URI you would like the response directed to.

• state (Optional) - Will be returned, unmodified, in the response.

The response will contain the following query parameters:

• code - The random 20 character string used to exchange for an access_token. This code expires in 10 mins
and can only be used 1 time.

• state - Only if this parameter was included in the request.

19.2 Access Token

Client app will make a POST request to /id/authenticationService/oauth/access_token. This request will contain the following parameters in the request body:

• client_id (Required) - The client_id your app was issued during when registered.

• client_secret (Required) - The client_secret your app was issued during when registered.

• code (Required) - The authorization code received in the authorization request.

• redirect_uri (Required) - The absolute URI you would like the response directed to. Must be identical to
the redirect_uri provided in the authorization request.

45

FIMS documentation Documentation, Release 1.0

• state (Optional) - Will be returned, unmodified, in the response.

• grant_type (Optional) - If grant_type is “password”, and a username and password is provided, the user-
name and password will be used for authentication. If authentication is successful, an access_token and
refresh_token will be returned

• password (Optional) - Required if grant_type is “password”.

• username (Optional) - Required if grant_type is “password”.

The JSON response will contain the following parameters:

• access_token - The random 20 character string used to access a user’s profile.

• refresh_token - The random 20 character string used to obtain a new access_token. This expires after 24
hrs.

• token_type - currently we only issue bearer tokens.

• expires_in - the number of seconds the token is good for.

• state - Only if this parameter was included in the request.

19.3 Refresh Token

Client app will make a POST request to /id/authenticationService/oauth/refresh. This request will contain the following parameters in the request body:

• client_id (Required) - The client_id your app was issued during when registered.

• client_secret (Required) - The client_secret your app was issued during when registered.

• refresh_token (Required) - The refresh_token you were issued with you access token.

The server will validate the refresh token and if the refresh token is less then 24 hrs old, a new access token will be
issued. The current refresh token will be expired and a new one will be issued.

The JSON response will contain the following parameters:

• access_token - The random 20 character string used to access a user’s profile.

• refresh_token - The random 20 character string used to obtain a new access_token. This expires after 24
hrs.

• token_type - currently we only issue bearer tokens.

• expires_in - the number of seconds the token is good for.

19.4 API Access

In order to obtain a user’s profile information, make a GET request to /id/userService/profile with the access_token as
a query parameter.

If the token is still valid, you will receive a JSON response with the following user information:

• firstName

• lastName

• email

• institution

46 Chapter 19. oauth2

FIMS documentation Documentation, Release 1.0

• userId

• username

• projectAdmin

• hasSetPassword

We also support access to any rest services on behalf of the user. Just append “?access_token=your_access_token” to
the url in order to access the service.

19.4. API Access 47

FIMS documentation Documentation, Release 1.0

48 Chapter 19. oauth2

CHAPTER 20

FIMS v1 migration to FIMS v2

Instructions for updating deployment for nmnh-fims and biscicol-fims.

Run the FimsAlterTableScript in biocode-fims-commons.

To use the FimsAlterTablesScript:

1. copy and paste the “mysql –batch –skip-column-names . . . ” to the cmd line.

2. copy the output

3. enter the mysql prompt

4. paste the output.

5. copy and paste the “drop table” and “alter table” lines from the FimsAlterTableScript to the mysql prompt. I
recommend doing this in blocks and not just copy and pasting everything at once.

After you complete the db migration, run the biocode.fims.utils.ExpeditionUpdater “main” method in biocode-fims-
commons. This will create bcids for all of the expeditions.

49

FIMS documentation Documentation, Release 1.0

50 Chapter 20. FIMS v1 migration to FIMS v2

CHAPTER 21

REST Service Migration Guide

This lists only the services that were changed. To get more information about the current REST services visit http:
//biscicol.org/biocode-fims/rest/fims.wadl

/id/authenticationService

• /loginLDAP

– moved to nmnh-fims

• /entrustChallenge

– moved to nmnh-fims

• /oauth/access_token

– moved to “id/authenticationService/oauth/accessToken”

– additional PostParams:

* grant_type: optional. If grant_type = “password”, then the user will be authenticated with the pro-
vided username and password POST params. Thus skipping the need to call “/oauth/authorize”
service 1st

* username: required if grant_type = “password”

* password: required if grant_type = “password”

• /reset

– moved to “biocode-fims/rest/users/resetPassword”

• /sendResetToken

– moved to “biocode-fims/rest/users/{username}/sendResetToken”

/projectService

• /validation/{projectId}

– removed

• /list

51

http://biscicol.org/biocode-fims/rest/fims.wadl
http://biscicol.org/biocode-fims/rest/fims.wadl

FIMS documentation Documentation, Release 1.0

– moved to “biocode-fims/rest/projects/list”

– now returns a JSONArray of “project” JSONObjects

* each JSONObject contains: “projectId”, “projectCode”, “projectTitle”, “validationXml”

• /graphs/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/graphs”

– now returns a JSONArray of “graph” JSONObjects

* each JSONObject contains: “expeditionCode”, “expeditionTitle”, “ts”, “identifier”, “bcidId”,
“projectId”, “webAddress”, “graph”

• /myGraphs

– moved to “biocode-fims/rest/projects/myGraphs”

– “ark” => “identifier”, “expedition_code” => “expeditionCode”, “project_id” => “projectId”,
“dataset_id” => “bcidId”, “expedition_title” => “expeditionTitle”

• /myDatasets

– moved to “biocode-fims/rest/projects/myDatasets”

– “ark” => “identifier”, “dataset_id” => “bcidId”

• /admin/list

– moved to “biocode-fims/rest/projects/admin/list”

– now returns a JSONArray of “project” JSONObjects

* each JSONObject contains: “projectId”, “projectCode”, “projectTitle”, “validationXml”

• /configAsTable/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/metadata”

• /configEditorAsTable/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/metadataEditor”

• /updateConfig/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/metadata/update”

• /removeUser/{projectId}/{userId}

– moved to “biocode-fims/rest/projects/{projectId}/admin/removeUser/{userId}”

• /addUser

– moved to “biocode-fims/rest/projects/{projectId}/admin/addUser”

• /listProjectUsersAsTable/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/users”

• /listUserProjects

– moved to “biocode-fims/rest/projects/user/list”

– now returns a JSONArray of “project” JSONObjects

* each JSONObject contains: “projectId”, “projectCode”, “projectTitle”, “validationXml”

• /saveTemplateConfig

– moved to “biocode-fims/rest/projects/{projectId}/saveTemplateConfig”

52 Chapter 21. REST Service Migration Guide

FIMS documentation Documentation, Release 1.0

• /getTemplateConfigs/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/getTemplateConfigs”

• /getTemplateConfig/{projectId}/{configName}

– moved to “biocode-fims/rest/projects/{projectId}/getTemplateConfig/{configName}”

• /removeTemplateConfig/{projectId}/{configName}

– moved to “biocode-fims/rest/projects/{projectId}/removeTemplateConfig/{configName}”

/expeditionService

• /associate

– moved to “biocode-fims/rest/expeditions/associate”

• /validateExpedition/{projectId}/{expeditionCode}

– moved to “biocode-fims/rest/expeditions/validate/{projectId}/{expeditionCode}”

• /

– moved to “biocode-fims/rest/expeditions/”

– now returns JSONObject of expeditionMetadata

* “identifier”, “public”, “expeditionCode”, “expeditionTitle”, “expeditionId”, “projectId”

• /graphMetadata/{graph}

– moved to “biocode-fims/rest/expeditions/graphMetadata/{graph}”

– now returns JSONObject of graphMetadata

* “graph”, “projectId”, “expeditionOwner”, “uploader”, “timestamp”, “identifier”, “resourceType”,
“finalCopy”, “isPublic”, “expeditionCode”, “expeditionTitle”

• /{projectId}/{expeditionCode}/{resourceAlias}

– moved to “biocode-fims/rest/expeditions/{projectId}/{expeditionCode}/{resourceAlias}”

– “ark” => “identifier”

• /deepRoots/{projectId}/{expeditionCode}

– removed

• /list/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/expeditions”

– now returns JSONArray of “expedition” JSONObjects

– each “expedition” object contains:

* “expeditionCode”, “expeditionTitle”, “public”, “expeditionId”

• /resourcesAsTable/{expeditionId}

– moved to “biocode-fims/rest/expeditions/{expeditionId}/resourcesAsTable”

• /datasetsAsTable/{expeditionId}

– moved to “biocode-fims/rest/expeditions/{expeditionId}/datasetsAsTable”

• /admin/listExpeditionsAsTable/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/admin/expeditions”

53

FIMS documentation Documentation, Release 1.0

• /admin/publicExpeditions

– moved to “biocode-fims/rest/expeditions/admin/updateStatus”

• /publicExpedition/{projectId}/{expeditionCode}/{publicStatus}

– moved to “biocode-fims/rest/expeditions/updateStatus/{projectId}/{expeditionCode}/{publicStatus}”

/userService

• /create

– moved to “biocode-fims/rest/users/admin/create”

• /createFormAsTable

– moved to “biocode-fims/rest/users/admin/createUserForm”

• /profile/update/{username}

– moved to “biocode-fims/rest/users/profile/update”

– now return JSONObject with: “adminAccess”, “returnTo”

• /profile/update

– moved to “biocode-fims/rest/users/profile/update”

– now return JSONObject with: “adminAccess”, “returnTo”

• /profile/listEditorAsTable/{username}

– moved to “biocode-fims/rest/users/admin/profile/listEditorAsTable/{username}”

• /profile/listEditorAsTable

– moved to “biocode-fims/rest/users/profile/listEditorAsTable”

• /profile/listAsTable

– moved to “biocode-fims/rest/users/profile/listAsTable”

• /oauth

– moved to “biocode-fims/rest/users/profile”

– now return JSONObject with: “firstName”, “lastName”, “email”, “institution”, “hasSetPassword”,
“userId”, “username”, “projectAdmin”

/elementService

• /select/{select}

– moved to “biocode-fims/rest/resourceTypes” or “biocode-fims/rest/resourceTypes/minusDataset”

– returns a JSONArray of resourceTypes. Each resourceType containing the following: * resourceType,
uri, description, string

• /resourceTypes

– moved to “biocode-fims/rest/resourceTypes”

– returns a JSONArray of resourceTypes. Each resourceType containing the following:

* resourceType, uri, description, string

• /creator

– removed

/groupService

54 Chapter 21. REST Service Migration Guide

FIMS documentation Documentation, Release 1.0

• /

– moved to “biocode-fims/rest/bcids/”

– “prefix” => “identifier”

• /metadata/{datasetId}

– moved to “biocode-fims/rest/bcids/metadata/{bcidId}”

– returns JSONObject containing “metadataElement” JSONObjects

• /list

– moved to “biocode-fims/rest/bcids/list”

– returns JSONArray of “bcid” JSONObjects

– “identifier”, “bcidId”

• /listUserBCIDsAsTable

– removed

• /listUserExpeditionsAsTable

– removed

• /dataGroupEditorAsTable

– removed

• /dataGroup/update

– moved to “biocode-fims/rest/bcids/update”

/biocode-fims/rest/authenticationService

• /login

– no longer uses oAuth to log a user in. Now accepts a username and password to login

• /access_token

– removed

/mapping

• /filterOptions/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/filterOptions”

– return JSONArray of JSONObjects * JSONObject contains “column” & “uri” attributes

/query

• /json (GET)

– moved to “biocode-fims/rest/projects/query/json” (GET)

• / json (POST)

– moved to “biocode-fims/rest/projects/query/json” (POST)

• /kml (GET)

– moved to “biocode-fims/rest/projects/query/kml” (GET)

• /kml (POST)

– moved to “biocode-fims/rest/projects/query/kml” (POST)

55

FIMS documentation Documentation, Release 1.0

• /cspace

– moved to “biocode-fims/rest/projects/query/cspace”

• /excel (GET)

– moved to “biocode-fims/rest/projects/query/excel” (GET)

• /excel (POST)

– moved to “biocode-fims/rest/projects/query/excel” (POST)

• /tab (GET)

– moved to “biocode-fims/rest/projects/query/tab” (GET)

• /tab (POST)

– moved to “biocode-fims/rest/projects/query/tab” (POST)

/templates

• /attributes

– moved to “biocode-fims/rest/projects/{projectId}/attributes “

• /getConfig/{projectId}/{configName}

– moved to “biocode-fims/rest/projects/{projectId}/getTemplateConfig/{configName}”

• /getConfigs/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/getTemplateConfigs”

• /removeConfig/{projectId}/{configName}

– moved to “biocode-fims/rest/projects/{projectId}/removeTemplateConfig/{configName}”

• /saveConfig/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/saveTemplateConfig”

• /abstract

– moved to “biocode-fims/rest/projects/{projectId}/abstract”

– returns JSONObject with “abstract”

• /createExcel

– moved to “biocode-fims/rest/projects/createExcel”

• /definition

– moved to “biocode-fims/rest/projects/{projectId}/getDefinition/{columnName}”

/utils

• /refreshCache/{projectId}

– removed

• /expeditionCodes/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/expeditions”

– now returns JSONArray of “expedition” JSONObjects

– each “expedition” object contains:

* “expeditionCode”, “expeditionTitle”, “public”, “expeditionId”

56 Chapter 21. REST Service Migration Guide

FIMS documentation Documentation, Release 1.0

• /graphs/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/graphs”

– now returns a JSONArray of “graph” JSONObjects

* each JSONObject contains: “expeditionCode”, “expeditionTitle”, “ts”, “identifier”, “bcidId”,
“projectId”, “webAddress”, “graph”

• /validateExpedition/{projectId}/{expeditionCode}

– moved to “biocode-fims/rest/expeditions/validate/{projectId}/{expeditionCode}”

• /getListFields/{listName}

– moved to “biocode-fims/rest/project/{projectId}/getListFields/{listName}”

– returns a jsonArray with the acceptable values for the list

• /isNMNHProject/{projectId}

– removed

• /listProjects

– moved to “biocode-fims/rest/projects/list”

• /callBCID

– removed

• /getDatasetDashboard

– removed

• /updatePublicStatus

– moved to “biocode-fims/rest/expeditions/updateStatus/{projectId}/{expeditionCode}/{publicStatus}”

• /getLatLongColumns/{projectId}

– moved to “biocode-fims/rest/projects/{projectId}/getLatLongColumns”

/validate

• /continue_nmnh

– removed

• /continue_spreadsheet

– removed

57

	Introduction
	Biocode FIMS Web Application
	How FIMS is organized

	Biocode FIMS ElasticSearch Query Information
	Querying
	Tokenization

	bioValidator: A desktop validation tool (legacy)
	About
	Getting Started
	Building rules for data validation
	Validating Data
	PhotoMatching

	Identifiers
	Expedition identifiers
	Dataset identifiers
	Resource identifiers
	BCID Resolution System

	Introduction to BCIDs
	Discussion
	Resolution w/ Suffixes
	Relationship with EZIDs
	RDF/XML Accept Headers
	Developer Information

	Samples and Sub-sampling
	Installation
	Details
	Installation and Build
	Optional Component
	Additional Installation Instructions
	Notes

	ElasticSearch Configuration
	Dynamic Templates
	Analyzer

	Index Aliases
	Implementations
	BiSciCol

	XML Configuration File
	Attributes

	REST Services
	Versioning

	FIMS Commons Javadocs
	User Accounts
	Account Creation
	Project Administrators

	Minting IDs, Creating Expeditions, and Validating Data using REST calls
	Logging in
	Mint Bcid
	Optional minting services

	curl Examples
	Public Content
	Secure Content
	Using the Creator

	oauth2
	Authorization
	Access Token
	Refresh Token
	API Access

	FIMS v1 migration to FIMS v2
	REST Service Migration Guide

